L. M. Smith, N. L. Kelleher, T. C. Proteomics, and T. D. For, Proteoform: a single term describing protein complexity, Nature Methods, vol.10, issue.3, pp.186-187, 2013.
DOI : 10.1093/nar/gkq907

URL : http://europepmc.org/articles/pmc4114032?pdf=render

C. Liu, Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, pp.6560-6565, 2013.
DOI : 10.1074/mcp.T600069-MCP200

A. Ragas, L. Roussel, G. Puzo, and M. Rivière, Cell-surface Glycoprotein Apa as a Potential Adhesin to Colonize Target Cells via the Innate Immune System Pulmonary C-type Lectin Surfactant Protein A, Journal of Biological Chemistry, vol.163, issue.8, pp.5133-5142, 2007.
DOI : 10.1126/science.1114347

M. González-zamorano, Glycoproteomics Based on ConA-Lectin Affinity Capture of Mannosylated Proteins, Journal of Proteome Research, vol.8, issue.2, pp.721-733, 2009.
DOI : 10.1021/pr800756a

J. L. Herrmann, R. Delahay, A. Gallagher, B. Robertson, and D. Young, Analysis of post-translational modification of mycobacterial proteins using a cassette expression system, FEBS Letters, vol.141, issue.3, pp.358-362, 2000.
DOI : 10.1099/13500872-141-10-2705

J. L. Herrmann, P. O-'gaora, A. Gallagher, J. E. Thole, and D. B. Young, Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis, EMBO J, vol.15, pp.3547-3554, 1996.

K. A. Wilkinson, Genetic determination of the effect of post-translational modification on the innate immune response to the 19 kDa lipoprotein of Mycobacterium tuberculosis, BMC Microbiology, vol.9, issue.1, p.93, 2009.
DOI : 10.1186/1471-2180-9-93

C. Neufert, Mycobacterium tuberculosis 19-kDa Lipoprotein Promotes Neutrophil Activation, The Journal of Immunology, vol.167, issue.3, pp.1542-1549, 2001.
DOI : 10.4049/jimmunol.167.3.1542

URL : http://www.jimmunol.org/content/jimmunol/167/3/1542.full.pdf

W. H. Boom, R. N. Husson, R. A. Young, J. R. David, and W. Piessens, In vivo and in vitro characterization of murine T-cell clones reactive to Mycobacterium tuberculosis, Infect. Immun, vol.55, pp.2223-2229, 1987.

C. J. Hertz, Microbial Lipopeptides Stimulate Dendritic Cell Maturation Via Toll-Like Receptor 2, The Journal of Immunology, vol.166, issue.4, pp.2444-2450, 2001.
DOI : 10.4049/jimmunol.166.4.2444

URL : http://www.jimmunol.org/content/jimmunol/166/4/2444.full.pdf

E. H. Noss, Toll-Like Receptor 2-Dependent Inhibition of Macrophage Class II MHC Expression and Antigen Processing by 19-kDa Lipoprotein of Mycobacterium tuberculosis, The Journal of Immunology, vol.167, issue.2, pp.910-918, 2001.
DOI : 10.4049/jimmunol.167.2.910

M. E. Pennini, R. K. Pai, D. C. Schultz, W. H. Boom, and C. Harding, Mycobacterium tuberculosis 19-kDa Lipoprotein Inhibits IFN-??-Induced Chromatin Remodeling of MHC2TA by TLR2 and MAPK Signaling, The Journal of Immunology, vol.176, issue.7, pp.4323-4330, 2006.
DOI : 10.4049/jimmunol.176.7.4323

M. López, The 19-kDa Mycobacterium tuberculosis Protein Induces Macrophage Apoptosis Through Toll-Like Receptor-2, The Journal of Immunology, vol.170, issue.5, pp.2409-2416, 2003.
DOI : 10.4049/jimmunol.170.5.2409

D. Shin, Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling, Cellular Microbiology, vol.66, issue.11, pp.1648-1665, 2010.
DOI : 10.1038/nature08118

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2010.01497.x/pdf

H. Diaz-silvestre, The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria, Microbial Pathogenesis, vol.39, issue.3, pp.97-107, 2005.
DOI : 10.1016/j.micpath.2005.06.002

S. Pitarque, binding to the lectin DC-SIGN reveals an underestimated complexity, Biochemical Journal, vol.392, issue.3, pp.615-624, 2005.
DOI : 10.1042/BJ20050709

URL : https://hal.archives-ouvertes.fr/pasteur-01372648

R. Prados-rosales, Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice, Journal of Clinical Investigation, vol.121, issue.4, pp.1471-1483, 2011.
DOI : 10.1172/JCI44261DS1

J. J. Athman, Lipoglycans and Lipoproteins from Infected Macrophages, The Journal of Immunology, vol.195, issue.3, pp.1044-1053, 2015.
DOI : 10.4049/jimmunol.1402894

P. A. Sieling, Conserved Mycobacterial Lipoglycoproteins Activate TLR2 but Also Require Glycosylation for MHC Class II-Restricted T Cell Activation, The Journal of Immunology, vol.180, issue.9, pp.5833-5842, 2008.
DOI : 10.4049/jimmunol.180.9.5833

URL : http://www.jimmunol.org/content/jimmunol/180/9/5833.full.pdf

J. K. Brülle, A. Tschumi, and P. Sander, Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by Apolipoprotein N-Acyltransferase BCG_2070c, BMC Microbiology, vol.13, issue.1, p.223, 2013.
DOI : 10.1186/1471-2180-13-223

T. Garbe, Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation, Infect Immun, vol.61, pp.260-267, 1993.

K. Sharma, Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling, Cell Reports, vol.8, issue.5, pp.1583-1594, 2014.
DOI : 10.1016/j.celrep.2014.07.036

K. R. Durbin, Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa, Journal of Proteome Research, vol.15, issue.3, pp.976-982, 2016.
DOI : 10.1021/acs.jproteome.5b00997

O. S. Skinner, An informatic framework for decoding protein complexes by top-down mass spectrometry, Nature Methods, vol.2, issue.3, pp.237-240, 2016.
DOI : 10.1021/pr401277r

O. T. Schubert, Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis, Cell Host & Microbe, vol.18, issue.1, pp.96-108, 2015.
DOI : 10.1016/j.chom.2015.06.001

J. K. Brülle, Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF, Biochemical and Biophysical Research Communications, vol.391, issue.1, pp.679-684, 2010.
DOI : 10.1016/j.bbrc.2009.11.120

K. M. Dobos, K. Khoo, K. M. Swiderek, P. J. Brennan, and J. Belisle, Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis., Journal of Bacteriology, vol.178, issue.9, pp.2498-2506, 1996.
DOI : 10.1128/jb.178.9.2498-2506.1996

S. L. Michell, -Linked Mannose and (1?????????3)-Mannobiose Moieties, Journal of Biological Chemistry, vol.267, issue.18, pp.16423-16432, 2003.
DOI : 10.1042/0264-6021:3630437

URL : http://www.jbc.org/content/278/18/16423.full.pdf

M. J. Sartain and J. Belisle, N-Terminal clustering of the O-glycosylation sites in the Mycobacterium tuberculosis lipoprotein SodC, Glycobiology, vol.67, issue.1, pp.38-51, 2008.
DOI : 10.1021/ac00104a020

G. T. Smith, M. J. Sweredoski, and S. Hess, O-linked glycosylation sites profiling in Mycobacterium tuberculosis culture filtrate proteins, Journal of Proteomics, vol.97, pp.296-306, 2014.
DOI : 10.1016/j.jprot.2013.05.011

URL : https://authors.library.caltech.edu/79270/1/nihms483027.pdf

C. Horn, to Stimulate T Lymphocyte Responses Related to Changes in Their Mannosylation Pattern, Journal of Biological Chemistry, vol.155, issue.45, pp.32023-32030, 1999.
DOI : 10.1002/eji.1830270942

S. Rosati, Y. Yang, A. Barendregt, and A. J. Heck, Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry, Nature Protocols, vol.9, issue.4, pp.967-976, 2014.
DOI : 10.1038/nprot.2007.73

J. C. Tran, Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature, vol.8, issue.7376, pp.254-258, 2011.
DOI : 10.1074/mcp.M900317-MCP200

URL : http://europepmc.org/articles/pmc3237778?pdf=render

Y. Yang, A. Barendregt, J. P. Kamerling, and A. J. Heck, Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms, Analytical Chemistry, vol.85, issue.24, pp.12037-12045, 2013.
DOI : 10.1021/ac403057y

Y. Ge, Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.269, issue.3, pp.253-261, 2003.
DOI : 10.1016/S0378-1119(01)00436-X

Y. Zhao, L. Sun, M. M. Champion, M. D. Knierman, and N. J. Dovichi, Secretome, Analytical Chemistry, vol.86, issue.10, pp.4873-4878, 2014.
DOI : 10.1021/ac500092q

A. Sánchez, P. Espinosa, T. García, and R. Mancilla, The 19 kDa Mycobacterium tuberculosis Lipoprotein (LpqH) Induces Macrophage Apoptosis through Extrinsic and Intrinsic Pathways: A Role for the Mitochondrial Apoptosis-Inducing Factor, Clin Dev Immunol, p.2012, 2012.

A. Tschumi, Functional Analyses of Mycobacterial Lipoprotein Diacylglyceryl Transferase and Comparative Secretome Analysis of a Mycobacterial lgt Mutant, Journal of Bacteriology, vol.194, issue.15, pp.3938-3949, 2012.
DOI : 10.1128/JB.00127-12

C. Abou-zeid, Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae, Infect Immun, vol.65, pp.1856-1862, 1997.

V. V. Yeremeev, The 19-kD antigen and protective immunity in a murine model of tuberculosis, Clinical and Experimental Immunology, vol.92, issue.2, pp.274-279, 2000.
DOI : 10.1046/j.1365-2567.1997.00358.x

F. A. Post, Mycobacterium tuberculosis 19-Kilodalton Lipoprotein Inhibits Mycobacterium smegmatis-Induced Cytokine Production by Human Macrophages In Vitro, Infection and Immunity, vol.69, issue.3, pp.1433-1439, 2001.
DOI : 10.1128/IAI.69.3.1433-1439.2001

F. Lermyte, ETD Allows for Native Surface Mapping of a 150 kDa Noncovalent Complex on a Commercial Q-TWIMS-TOF Instrument, Journal of The American Society for Mass Spectrometry, vol.21, issue.332, pp.343-350, 2014.
DOI : 10.1016/j.jasms.2010.06.012

K. Kurokawa, Environment-Mediated Accumulation of Diacyl Lipoproteins over Their Triacyl Counterparts in Staphylococcus aureus, Journal of Bacteriology, vol.194, issue.13, pp.3299-3306, 2012.
DOI : 10.1128/JB.00314-12

P. Chahales and D. G. Thanassi, A More Flexible Lipoprotein Sorting Pathway, Journal of Bacteriology, vol.197, issue.10, pp.1702-1704, 2015.
DOI : 10.1128/JB.00051-15

URL : http://jb.asm.org/content/197/10/1702.full.pdf

B. C. Vanderven, J. D. Harder, D. C. Crick, and J. Belisle, Export-Mediated Assembly of Mycobacterial Glycoproteins Parallels Eukaryotic Pathways, Science, vol.309, pp.941-943, 2005.

J. Gault, Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation, PLOS Pathogens, vol.13, issue.3, p.1005162, 2015.
DOI : 10.1371/journal.ppat.1005162.s005

URL : https://hal.archives-ouvertes.fr/pasteur-01300944

H. Nakayama, K. Kurokawa, and B. L. Lee, Lipoproteins in bacteria: structures and biosynthetic pathways, FEBS Journal, vol.300, issue.23, pp.4247-4268, 2012.
DOI : 10.1016/j.ijmm.2009.08.018

URL : http://onlinelibrary.wiley.com/doi/10.1111/febs.12041/pdf

S. Prisic and R. N. Husson, Mycobacterium tuberculosis Serine, Threonine Protein Kinases. Microbiol Spectr, vol.2, 2014.

K. Becker and P. Sander, Mycobacterium tuberculosis lipoproteins in virulence and immunity -fighting with a double-edged sword, FEBS Lett, pp.10-1002, 2016.

R. L. Gaur, LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis, PLoS Pathogens, vol.288, issue.9, p.1004376, 2014.
DOI : 10.1371/journal.ppat.1004376.s010

G. Sulzenbacher, LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis, The EMBO Journal, vol.142, issue.7, pp.1436-1444, 2006.
DOI : 10.1038/sj.emboj.7601048

E. E. Noens, Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1??C expression strain, BMC Biotechnology, vol.11, issue.1, p.27, 2011.
DOI : 10.1128/JB.188.2.477-486.2006

URL : https://bmcbiotechnol.biomedcentral.com/track/pdf/10.1186/1472-6750-11-27?site=bmcbiotechnol.biomedcentral.com

M. Gersch, A Mass Spectrometry Platform for a Streamlined Investigation of Proteasome Integrity, Posttranslational Modifications, and Inhibitor Binding, Chemistry & Biology, vol.22, issue.3, pp.404-411, 2015.
DOI : 10.1016/j.chembiol.2015.01.004