Estimation of the extreme value index in a censorship framework: asymptotic and finite sample behaviour

Abstract : We revisit the estimation of the extreme value index for randomly censored data from a heavy tailed distribution. We introduce a new class of estimators which encompasses earlier proposals given in Worms and Worms (2014) and Beirlant et al. (2018), which were shown to have good bias properties compared with the pseudo maximum likelihood estimator proposed in Beirlant et al. (2007) and Einmahl et al. (2008). However the asymptotic normality of the type of estimators first proposed in Worms and Worms (2014) was still lacking, in the random threshold case. We derive an asymptotic representation and the asymptotic normality of the larger class of estimators and consider their finite sample behaviour. Special attention is paid to the case of heavy censoring, i.e. where the amount of censoring in the tail is at least 50\%. We obtain the asymptotic normality with a classical $\sqrt{k}$ rate where $k$ denotes the number of top data used in the estimation, depending on the degree of censoring.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01768990
Contributeur : Julien Worms <>
Soumis le : mardi 17 avril 2018 - 16:06:36
Dernière modification le : vendredi 6 juillet 2018 - 17:15:42

Fichiers

CLTforLeurgansEstimator-17Apri...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01768990, version 1
  • ARXIV : 1804.06583

Citation

Jan Beirlant, Julien Worms, Rym Worms. Estimation of the extreme value index in a censorship framework: asymptotic and finite sample behaviour. 2018. 〈hal-01768990〉

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

25