Perpetual integrals convergence and extinctions in population dynamics

Abstract : In this article we use a criterion for the integrability of paths of one-dimensional diffusion processes from which we derive new insights on allelic fixation in several situations. This well known criterion involves a simple necessary and sufficient condition based on scale function and speed measure. We provide a new simple proof for this result and also obtain explicit bounds for the moments of such integrals. We also extend this criterion to non-homogeneous processes by use of Girsanov's transform. We apply our results to multi-type population dynamics: using the criterion with appropriate time changes, we characterize the behavior of proportions of each type before population extinction in different situations.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger
Contributeur : Denis Villemonais <>
Soumis le : mercredi 26 avril 2017 - 18:45:56
Dernière modification le : jeudi 23 novembre 2017 - 01:15:42
Document(s) archivé(s) le : jeudi 27 juillet 2017 - 14:41:09


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01514977, version 1


Camille Coron, Sylvie Méléard, Denis Villemonais. Perpetual integrals convergence and extinctions in population dynamics. 2017. 〈hal-01514977〉



Consultations de la notice


Téléchargements de fichiers