Since 1929, polarization has been used to characterize Venus’ clouds and hazes refractive index, size and distribution. Most of our knowledge is based on measurements and modelisation made by Lyot[4], Hansen and Hovenier[6], Kawabata[2] and Sato[6] with ground and space observation. Our goal here is to make new measurements using the polarimetric data provided by the instrument SPICAV on Venus Express.

Main cloud layer

<table>
<thead>
<tr>
<th>Abundance</th>
<th>50 to 75 km</th>
<th>70 to 90 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>H2SO4·H2O</td>
<td>H2SO4·H2O</td>
</tr>
<tr>
<td>Radius</td>
<td>(r \sim 1 \mu m)</td>
<td>(r \sim 0.25 \mu m)</td>
</tr>
</tbody>
</table>

Scattering processes

Depending on the radius \(r \) and the wavelength of observation, different scattering processes are involved. They can be distinguished with the size parameter \(x = \frac{2\pi r}{\lambda} \).

- **Rayleigh regime** (\(x \ll 1 \)):
 - Isotropically scattered, cross-section \(\propto 1/\lambda^4 \).
 - Linear polarization is \(+100\% \) for \(\theta = 90^\circ \).

- **Mie regime** (\(x > 1 \)):
 - Strong forward scattering. Polarization patterns are much more complicated. Dependence on \(n \) and \(x \). Generates optical features such as glories at low phase angles. Particle size distribution described by \(n_r \), mean radius and \(n_{\text{eff}} \) variance of the distribution.

Mie model

- Model based on spherical drops with \(n_r \sim 0 \)
- \(x \to 0 \): Rayleigh regime
- \(x \to 20^\circ \): Strong negative polarization feature near 20°.

SPICAV

SPICAV is a spectrometer onboard the Venus Express spacecraft[3]. Based on an Acousto-Optical Tunable Filter (AOTF) which produces two beams linearly polarized in perpendicular directions.

Measure of the linear polarization degree:

\[
P_L = \frac{P_2 - P_0}{P_1 + P_0} = \frac{d_2 - d_0}{d_1 + d_0} \]

Cross-calibration can be performed by knowing that for any wavelength \(P(x = 0) = 0 \). Acquisition is made with spectral window and sets of 3, 5 or 10 points for continuum measurement. We use the latter points to measure polarization.

SPICAV observations

- Observations done in nadir mode
- Mostly located on dayside and in northern hemisphere
- Up to 14 wavelengths available

Analysis

The glory position and shape is dependent on values of \(n_r, n_{\text{eff}} \) and \(n_{\text{ref}} \). We can use this property to constrain the refractive index under a single scattering assumption.

Conclusion and perspectives

- **SPICAV** polarization data is fully exploitable
- Coherent with previous observations: same features and order of magnitude
- Good coverage in latitude, phase angle and time: possible study of variations
- Glories are a tool to constrain \(n_r, n_{\text{eff}} \) and \(n_{\text{ref}} \)

Acknowledgments

This PhD thesis is funded by the LabEx “Exploration Spatiale des Environnements Planétaires” (ESEP) No 2011 LABX-030. We want to thank the State and the ANR for their support within the programme “Investissements d’avenir” through the excellence initiative PSL*(ANR-10-IDEX-0001-02).

References
